Arteris Articles

Semiconductor Engineering: ISO 26262:2018, 2nd Edition: What Changes?

 Arteris IP's Kurt Shuler, vice president of marketing, delivers a recent update for the ISO 26262 standard in this blog in Semiconductor Engineering;

ISO 26262:2018, 2nd Edition: What changes?

February 7th,  2019 - By Kurt Shuler

The safety standard is now clearer for IP-based designs and those happening across multiple companies.

If you’re involved somehow in design for automotive electronics, you probably have more than a cursory understanding of the ISO 26262 standard. What your organization is working from is most likely the 2011 definition. The most recent update is formally known as ISO 26262:2018, less formally as ISO 26262 2nd Edition.

Standards should evolve, but what changed and why? I’ve been a member of the ISO 26262 working group for many years, and particularly involved in how it should be interpreted for IP, and I’ve got to tell you, I have struggled. 

From my perspective, it was originally written around an implicit expectation that chips are built from scratch entirely within one organization, and this is a dated assumption. There was also not enough guidance for IP-based design or design distributed across multiple companies or sites. The workaround for an IP supplier has been to use the Safety Element out of Context (SEooC) mechanism. But this depends heavily on human interpretation, by the component vendor on what may be relevant to the integrator and vice-versa, with little guidance from the 2011 version of the standard. I complained (whined?) quite a bit to the committee about these problems and they eventually invited me to the working group. I wasn’t the only one confused and other people joined, and we seem to have had an impact; our efforts have resulted in a lot more clarification, organization and practical examples in the latest standard. I think the new Part 11 of the updated standard provides a lot more detail and useful examples for us in the semiconductor and semiconductor IP industry.

For more information about ISO 26262:2018 Part 11, download the 39-slide Arm TechCon presentation titled, “Fundamentals of ISO 26262 Part 11 for Semiconductors,” by Arteris IP Functional Safety Manager Alexis Boutillier and ResilTech Scientific Advisor Dr. Andrea Bondavalli, or watch my very popular SemiEngineering “Tech Talk: ISO 26262 Drilldown” video.

Topics: AI chips semiconductor AI automotive neural networks ML AI SoC Designers flexnoc ai package noc interconnect ISO 26262 certification

Semiconductor Engineering: Chasing Reliability In Automotive Electronics

 Arteris IP's Kurt Shuler, vice president of marketing has authored a paper about ISO 26262 and comments in this article;

Chasing Reliability In Automotive Electronics 

January 15th,  2019 - By Susan Rambo and Ed Sperling

Supply chain changes, resistance to sharing data and technology unknowns add up to continued uncertainty.

"Traditional semiconductor vendors who are making or designing chips to enable autonomous driving applications are nowadays sometimes competing with Tier-1 electronics system designers and OEMs, who may be making their own chips or providing explicit requirements to their semiconductor vendor partners. Additionally, new entrants like Uber, Way and Apple are designing their own complete systems, despite their relative lack of experience in the automotive industry. ISO 26262 mandates high levels of collaboration and information sharing throughout the value chain that may be unfamiliar to new entrants."

The ISO 26262 standard is snapshot of issues and the lengths the whole supply chain has to go. Collaboration is key. Communication is part of the safety standards up and down the automotive safety critical supply chain now. It’s built into the standards.

Sharing knowledge of a supplier’s crown jewels—intellectual property—has to happen among suppliers and auto OEMs. “Participants in the semiconductor and software supply chains are usually secretive about how their IP was developed and how it works in detail,” said Shuler. Suppliers should remember that the “your customer still has an obligation to confirm your compliance with ISO 26262.”

To learn more, please download this technical paper, Fundamentals of Semiconductor ISO 26262 Certification: People, Process and Product.

Topics: AI chips semiconductor AI automotive neural networks ML AI SoC Designers flexnoc ai package noc interconnect ISO 26262 certification

SemiWiki: Supporting ASIL-D Through Your Network on Chip

Kurt Shuler, VP Marketing at Arteris IP has written a White-Paper 'How to efficiently achieve ASIL-D compliance using NoC technology', and discusses the details with Bernard Murphy in this SemiWiki blog:

Supporting ASIL-D Through Your Network on Chip 

September 20th,  2018 - By Bernard Murphy

ASIL-D compliance for safety (the top-level of safety)  in automotive applications has become much more prominent as a requirement than we might have expected. Bernard Murphy (SemiWiki) provides his take after reading Kurt Shuler’s white-paper on how the NoC interconnect connecting IPs can help meet this goal and why this approach to safety in integration is more efficient than some frequently discussed alternatives.

Topics: SoC semiwiki kurt shuler safety culture ISO 26262 ASIL D NoC compliance semiconductor ISO 26262 certification ASIL-B failure mitigation FMEDA

Design & Reuse: Interconnect for AI and Automotive Solutions Video

Kurt Shuler, VP of Marketing at Arteris IP, discusses AI and Automotive in this video:

Design & Reuse: Arteris IP Interconnect for AI and Automotive Solutions 

June 26th, 2018 

Gabrielle interviews Kurt Shuler at DAC 2018, San Francisco, CA

Topics: ISO 26262 compliance ISO 26262 training autonomous vehicles ADAS ASIL D safety functional safety manager FlexNoC ISO 26262 certification ISO 26262 specification