Arteris Articles

Semiconductor Engineering: Where Should Auto Sensor Data Be Processed?

 Arteris IP's Kurt Shuler, Vice President of Marketing, comments in this latest Semiconductor Engineering article:

Where Should Auto Sensor Data Be Processed?

August 1st, 2019 - By Ann Steffora Mutschler

Fully autonomous vehicles are coming, but not as quickly as the initial hype would suggest...

 

Indeed, when it comes to processing the sensor data, a number of approaches currently point to allowing for scaling between different ADAS levels, but which the best way to do that is still up for debate.

“There must be an architecture they can do that with, and the question is, ‘How do you do that?'” said Kurt Shuler, vice president of marketing at Arteris IP. “There’s a lot of interest in getting more hardware accelerators to manage the communications in software, and directly managing the memory. For this, cache coherence is growing in importance. But how do you scale a cache coherent system? This must be done in an organized way, as well as adding a whole bunch of masters and slaves to it, such as additional clusters.”

For more information, please download the Arteris FlexNoC Interconnect IP data sheet; https://www.arteris.com/download-flexnoc-datasheet

Topics: SoC autonomous driving ArterisIP FlexNoC semiconductor engineering LIDAR noc interconnect cache coherence hardware accelerators

Semiconductor Engineering: The Race To Multi-Domain SoCs

 Arteris IP's CEO looks at how automotive and AI are Altering chip design in this article in Semiconductor Engineering;

The Race To Multi-Domain SoCs

February 7th,  2019 - By Ed Sperling

K. Charles Janac, president and CEO of Arteris IP, sat
down with Semiconductor Engineering to discuss the impact of automotive and AI on chip design. What follows are excerpts of that conversation.

SE: What do you see as the biggest changes over the next 12 to 24 months?
Janac: There are segments of the semiconductor market that are shrinking, such as DTV and simple IoT. Others are going through an investment phase, including automotive, AI/machine learning and China. You really want to be focused on those segments. 

SE: So does IP that’s being developed today look radically different than it did five years ago?
Janac:
Yes, everything is getting amazingly complex. What people are building right now are multi-domain SoCs. The CPU, which used to do all the work, does relatively less work. There are accelerators for vision and data analysis outside of the CPU subsystem. There are machine learning sections, some general-purpose, some very specific, all on-chip. There is a memory subsystem with very high-bandwidth memory and low latency. There also is functional safety. You need tremendous performance because a car is a supercomputer on wheels. The car has to be very efficient, because you need to deliver that compute power without water cooling. Power management becomes very sophisticated. And then there are functional safety and security subsystems to keep these safe from environmental and man-made issues.

SE: Where does the network on chip (NoC) fit into all of this?
Janac: All data goes through the NoC of the chip. There are opportunities for generating value from that. But the increase in complexity is increasing the number and sophistication of the interconnect parts of the chip. Before, you may have had networks on chip. Now you may have 20 or 30.

Topics: semiconductor automotive ADAS neural networks AI LIDAR flexnoc ai package noc interconnect ML AI SoC Designers chiplets

EE Times Designlines Blog: Auto OEMs, Tier-Ones: Think SoC Designs

This EE Times blog in Designlines Automotive titled, Auto OEMs, Tier-Ones: Think SoC Designs, is written by Kurt Shuler, VP Marketing at Arteris IP. 

Topics: functional safety ADAS eetimes mobileye tier 1 automotive design LIDAR SoCs interconnects OEMs 3D mapping

Semiconductor Engineering: FPGAs Drive Deeper Into Cars

Ty Garibay, CTO at Arteris IP, provides his expertise in this Semiconductor Engineering article:

FPGAs Drive Deeper Into Cars

 

July 9th, 2018 - By Ann Steffora Mutschler

Topics: FPGAs semiconductor autonomous vehicles autonomous driving semiconductor engineering arteris ip LIDAR SoCs