Arteris Articles

Semiconductor Engineering: Virtualization In The Car

Stefano Lorenzini, Functional Safety Manager at Arteris IP is quoted in this new article in Semiconductor Engineering:

Virtualization In The Car

August 6th, 2020 - By Ann Steffora Mutschler

How and why abstraction layers are becoming essential in automotive design.

 
“It’s a way to create multiple virtual instantiations of the same hardware, and every instance is virtually dedicated to a specific product or software or application,” said Stefano Lorenzini, functional safety manager at Arteris IP . “The hypervisor is a bare-metal operating system that runs directly on the hardware and creates an intermediate layer with respect to other application or software programs that are running on top. So if you want to look to the architecture from the top to the bottom, you see the application, then you see the hypervisor, and then you see the hardware layer. The hypervisor is the thing that creates this illusion to the application that every resource of the SoC is dedicated to them.”
 
Topics: SoC automotive autonomous vehicles NoC technology semiconductor engineering soc architecture AI ASIL D functional safety manager noc interconnect IP market automotive electronics

Semiconductor Engineering: Maximizing Value Post-Moore's Law

Kurt Shuler, Vice President of Marketing at Arteris IP quoted in this new article in Semiconductor Engineering:

Maximizing Value Post-Moore's Law

July 13th, 2020 - By Brian Bailey

The value of a semiconductor can be difficult to measure because it involves costs and benefits over time. As market segments feel different pressures, maximizing value is going in several directions. 

 
“Assessing value is really hard because it is over the lifetime,” says Kurt Shuler, vice president of marketing at Arteris IP. “A lot of chips are disposable. Consider your cell phone. You don’t really care if it’s working 10 years from now. For the data center guys and the AI chips, it’s the same thing. Certain industries do want that chip to last for 15 or 20 years, and that’s automotive, industrial — those kinds of things where there’s a huge capital cost component to that piece of equipment and people are not going to be throwing it away.
 
Topics: SoC IoT ADAS NoC technology semiconductor engineering soc architecture AI kurt shuler data centers noc interconnect IP market chip costs

Semiconductor Engineering: Winners and Losers At The Edge

Kurt Shuler, Vice President of Marketing at Arteris IP comments in this new article in Semiconductor Engineering:

Winners and Losers At The Edge

July 7th, 2020 - By Ed Sperling

No company owns this market yet — and won’t for a very long time. 

 
 
“Everything is use-case based when designing the NoC,” said Kurt Shuler, vice president of marketing at  Arteris IP . “You’ve got to understand what the use case is to be able to size up that NoC. There are two aspects of this. One is in the creation of that network on chip and the configuration of it, and what gets burned into the chip. The other step is, once you’ve created all the roads — they’re this long or this wide — that’s it.
 
Topics: SoC automotive NoC technology semiconductor engineering AI kurt shuler noc interconnect ML IP market

SemiWiki: Where's the Value in Next-Gen Cars?

Bernard Murphy learns more from Kurt Shuler on the shifting landscape in the automotive electronics value chain in this new SemiWiki blog:

Where's the Value in Next-Gen Cars?

June 22th, 2020 - By Bernard Murphy

Value chains can be very robust and seemingly unbreakable – until they’re not. One we’ve taken for granted for many years is the chain for electronics systems in cars. The auto OEM, e.g. Toyota, gets electronics module from a Tier-1 supplier such as Denso. They, in turn, build their modules using chips from a semiconductor chip maker such as Renesas, who produces their chips using pre-packaged functions from IP providers like Arm. Toyota could do the whole thing themselves, but it’s very expensive to set-up and maintain all of that infrastructure. Specialization makes it all more practical. Everyone makes money doing their bit well and cost-effectively and being able to sell to multiple customers (Toyota, GM, BMW, etc.). However, that cash flow can be upended when disruptive innovations are thrown into the supply chain, in this case, a lot more intelligence and autonomy. I talked to Kurt Shuler (VP Marketing at Arteris IP) to get his view. Kurt is an IP supplier and has a unique viewpoint because he works with semis, Tier-1s and OEMs, with standard designs as well as newer AI-based designs. He’s also an active member of the ISO 26262 committee.

 

 

Topics: SoC ISO 26262 semiconductor Ncore mobileye FlexNoC autonomous driving AI semiwiki kurt shuler noc interconnect Tier 1s value-chain