Arteris Articles

Semiconductor Engineering: More Data Drives Focus On IC Energy Efficiency

Michael Frank, fellow and system architect at Arteris IP are quoted in this new Semiconductor Engineering article:

More Data Drives Focus On IC Energy Efficiency

April 8th, 2021 - By Ann Steffora Mutschler

Decisions that affect how, when, and where data gets processed.

"On the chip side, it’s an engineering discipline. On the other side are the algorithm experts who understand what the masks are and what they want to do,” said Michael Frank, fellow and system architect at Arteris IP.

Topics: SoC NoC network-on-chip machine learning neural networks semiconductor engineering arteris ip interconnects chiplets Michael Frank memory architecture TensorFlow

Semiconductor Engineering: Interconnects In A Domain-Specific World

Kurt Shuler, Vice President of Marketing and Guillaume Boillet, Director of Product Management at Arteris IP are quoted in this new Semiconductor Engineering article:

Interconnects In A Domain-Specific World

April 8th, 2021 - By Brian Bailey

When and where tradeoffs between efficiency and flexibility make sense.

"The prediction of power consumption of chips under a given workload is one of the most complex tasks our industry must tackle today,” says Guillaume Boillet, director of product management for Arteris IP

Kurt Shuler, vice president of marketing at Arteris IP says, “You may have 200 things connected to your NoC at the center of the chip. The NoC tool manages all of the meta data for the IP connected to it. Back-figuring all that information is a huge source of systematic errors. We all make mistakes. And that causes problems, not just for regular chips. But can you imagine that for typical functional safety requirements?”

Topics: SoC NoC functional safety network-on-chip neural networks semiconductor engineering arteris ip interconnects kurt shuler power consumption meta data

Semiconductor Engineering: Privacy Protection A Must For Driver Monitoring

Kurt Shuler, Vice President of Marketing at Arteris IP is quoted in this new Semiconductor Engineering article:

Privacy Protection A Must For Driver Monitoring 

April 1st, 2021 - By Ann Steffora Mutschler

Why driver data collected by in-cabin monitoring systems must be included as part of the overall security system.

Privacy and security has to be addressed at every layer, by all parties, said Kurt Shuler, vice president of marketing at Arteris IP. “We’re getting questions from customers asking, ‘You’ve got this interconnect, it’s a network, you have these firewalls, how do I integrate this into my overall security system for my chip?’ They also want to know how to integrate that in the overall security system of that vehicle subsystem, and how to integrate that into the overall security system for the car, and then the network of cars. If I’m GM, I’ve got a whole network of GM cars running around. Where there’s OnStar, I have to protect that data too, and that’s sitting on servers. The OEM is cognizant of this because they know from market forces that if they screw it up, then people aren’t going to trust them. And even though there are IEEE, ISO, and SAE standards, selling security is like selling insurance. Nobody thinks they need it until after the incident happened. The risk is huge here if you don’t do it right, so you should do everything state of the art. However, there’s nothing currently legally forcing that.”

Topics: SoC NoC functional safety ISO 26262 network-on-chip automotive IEEE semiconductor engineering arteris ip interconnects OEMs security driver monitoring

Semiconductor Engineering: SoC Integration Complexity: Size Doesn't (Always) Matter

Kurt Shuler, Vice President of Marketing at Arteris IP authored this new Semiconductor Engineering article:

SoC Integration Complexity: Size Doesn't (Always) Matter

April 1st, 2021 - By Kurt Shuler

Even small IoT designs can have plenty of complexity in architecture and integration.

It’s common when talking about complexity in systems-on-chip (SoCs) to haul out monster examples: application processors, giant AI chips, and the like. Breaking with that tradition, consider an internet of things (IoT) design, which can still challenge engineers with plenty of complexity in architecture and integration. This complexity springs from two drivers: very low power consumption, even using harvested MEMS power instead of a battery, and quick turnaround to build out a huge family of products based on a common SoC platform while keeping tight control on development and unit costs.

Topics: SoC NoC network-on-chip IoT low power semiconductor engineering arteris ip ip-xact interconnects kurt shuler DVFS ip deployment