Arteris Articles

Semiconductor Engineering: Sensor Fusion Challenges In Cars

Kurt Shuler, Vice President of Marketing at Arteris IP is quoted in this new article in Semiconductor Engineering:

Sensor Fusion Challenges In Cars

October 8th, 2020 - By Ann Steffora Mutschler

As more pieces of the autonomous vehicle puzzle come into view, the enormity of the challenge grows.

You could say it’s the Wild West, but you could also say there’s tons of innovation happening,” said Kurt Shuler, vice president of marketing at Arteris IP. “That’s true whether it’s on the sensor chips or whether it’s on the ADAS brain chips. Eventually you want to be able to explain things in symbolic terms, and have an intermediate layer such that once you get this data, the data as its transmitted is in some kind of lingua franca that both sides can understand even though they’re from two separate companies. What I don’t know is how much processing it will take to move something from more of a raw data format into something useful. Eventually, there has to be a data format.”

Topics: SoC NoC automotive ADAS autonomous vehicles radar semiconductor engineering soc architecture LIDAR interconnects kurt shuler noc interconnect data ML/AI IP market

Semiconductor Engineering: The Role Of NoCs In System-Level Services

Kurt Shuler, Vice President of Marketing at Arteris IP authored this new article in Semiconductor Engineering:

The Role Of NoCs In System-Level Services

September 8th, 2020 - By Kurt Shuler

The central nervous system of SoCs is expanding to help manage things like QoS and performance.

The primary objective of any network-on-chip (NoC) interconnect is to move data around a chip as efficiently as possible with as little impact as possible on design closure while meeting or exceeding key design metrics (PPA, etc.). These networks have become the central nervous system of SoCs and are starting to play a larger role in system-level services like quality of service (QoS), debug, performance analysis, safety and security because these on-chip interconnects transport and “see” most if not all of the of the on-chip dataflow. Think of the NoC as the SoC’s “all seeing eye” and you’ll have a better understanding of what is technically possible.
 
Topics: SoC NoC ISO 26262 SoC QoS automotive semiconductor engineering soc architecture ASIL D kurt shuler QoS noc interconnect IP market

Semiconductor Engineering: Software-Defined Vehicles

Kurt Shuler, Vice President of Marketing at Arteris IP is quoted in this new article in Semiconductor Engineering:

Software-Defined Vehicles

September 4th, 2020 - By Bryon Moyer

The electrification of cars makes all sorts of things possible. 

“There’s a big open question regarding how these updates affect functional safety,” said Kurt Shuler, vice president of marketing at Arteris IP . “Is it practical to completely redo the safety analysis for each update?”
 
Topics: SoC NoC functional safety ISO 26262 automotive ADAS NoC technology semiconductor engineering soc architecture kurt shuler AI chips noc interconnect IP market

SemiWiki: Interconnect Basics: Wires to Crossbar to NoC

Kurt Shuler shares with Bernard Murphy an introduction to interconnect topologies, a useful primer to anyone who thinks of interconnect as “just wires” in this new SemiWiki blog:

Interconnect Basics: Wires to Crossbars to NoC

August 21, 2020 - By Bernard Murphy

To many of us, if we ever think about interconnect on an SoC, we may think delay, power consumption, congestion, that sort of thing. All important points from an implementation point of view, but what about the functional and system implications? In the early days, interconnect was very democratic, all wires more or less equal, connecting X to Y wherever needed. If you had a data bus, you’d route that more carefully to ensure roughly equal delays for each bit, which works pretty well when you don’t have a lot of on-chip functions. But there’s more to it than that. This blog is a quick introduction to interconnect basics.

Topics: SoC network-on-chip crossbar semiconductor Ncore FlexNoC networks AI semiwiki kurt shuler noc interconnect NoC layer