Arteris Articles

Semiconductor Engineering: Automotive AI Hardware: A New Breed

Kurt Shuler, Vice President of Marketing at Arteris IP authored this new article in Semiconductor Engineering:

Automotive AI Hardware: A New Breed

June 3rd, 2021 - By Kurt Shuler

What sets automotive apart from the conventional wisdom on AI hardware markets.

Arteris IP functional safety manager Stefano Lorenzini recently presented “Automotive Systems-on-Chip (SoCs) with AI/ML and Functional Safety” at the Linley Processor Conference. A main point of the presentation was that conventional wisdom on AI hardware markets is binary. There’s AI in the cloud: Big, power-hungry, general-purpose. And there’s AI at the edge: Small, low power, limited application-specific features. Automotive AI doesn’t really fit into either category. To power ADAS and autonomous driving functions, these chips are extremely application-specific and require more performance than typical edge AI, are low power but not as low as IoT chips at the edge, and must be as low cost as possible. They also add a new angle – low latency because safety demands fast and deterministic response times. Add to all that the functional safety requirements demanded by ISO 26262 – inside the AI structure as much as everywhere else. Bottom line: Automotive AI SoC architectures are unique beasts.

Topics: SoC NoC functional safety network-on-chip automotive ECC The Linley Group ISO 26262 compliance semiconductor engineering arteris ip interconnects kurt shuler AI SoCs AI/ML Stefano Lorenzini heterogeneous socs ASIL

SemiWiki: Architecture Wrinkles in Automotive AI: Unique Needs

Bernard Murphy (SemiWiki) learns from Stefano Lorenzini, Functional Safety Manager at Arteris IP, the difference between AI in automotive and other contexts. 

Architecture Wrinkles in Automotive AI: Unique Needs

May 20th, 2021 - Bernard Murphy

Arteris IP recently spoke at the Spring Linley Processor Conference on April 21, 2021 about Automotive systems-on-chips (SoCs) architecture with artificial intelligence (AI)/machine learning (ML) and Functional Safety. Stefano Lorenzini, Functional Safety Manager at Arteris IP, presented a nice contrast between auto AI SoCs and those designed for datacenters. Never mind the cost or power, in a car we need to provide near real-time performance for sensing, recognition and actuation. For IoT applications we assume AI on a serious budget, power-sipping, running for 10 years on a coin cell battery. But that isn't the whole story. AI in the car is a sort of hybrid, with the added dimension of safety, which makes for unique architecture wrinkles in automotive AI.  
Topics: SoC NoC network-on-chip semiconductor ECC The Linley Group FlexNoC arteris ip semiwiki functional safety manager kurt shuler data centers noc interconnect AI SoCs AI/ML automotive AI Hardware Stefano Lorenzini

SemiWiki: Autonomous Driving Still Terra Incognita

A panel at Arm TechCon reviewed where we're at in self-driving. Andrew Hopkins or Arm, Kurt Shuler of Arteris IP, Martin Duncan of ST, Hideki Sugimoto of NSITEXE/DENSO and Mike Demler of The Linley Group, moderated the debated the practicalities.  Bernard Murphy of SemiWiki provides his take on the discussion in this new blog:

Autonomous Driving Still Terra Incognita

December 12th, 2019 - By Bernard Murphy

I already posted on one automotive panel at this year’s Arm TechCon. A second I attended was a more open-ended discussion on where we’re really at in autonomous driving. Most of you probably agree we’ve passed the peak of the hype curve and are now into the long slog of trying to connect hope to reality. There are a lot of challenges, not all technical; this panel did a good job (IMHO) of exposing some of the tough questions and acknowledging that answers are still in short supply. I left even more convinced that autonomous driving is still a hard problem needing a lot more investment and a lot more time to work through.

You can learn more about this by downloading the Arm TechCon presentation HERE.

Topics: SoC ARM semiconductor automotive flexnoc resilience package The Linley Group automotive functional safety ArterisIP ISO 26262 compliance artificial intelligence AI semiwiki kurt shuler noc interconnect SOTIF (ISO 21448 UL 4600

Arteris Ncore Cache Coherent Interconnect IP Featured in Linley Group Paper

Arteris' Ncore Cache Coherent Interconnect IP was featured in a Linley Group white paper titled, "Easing Heterogeneous Cache Coherent SoC Design using Arteris’ Ncore Interconnect."

Topics: white paper download Ncore cache coherent interconnect The Linley Group